
//	
  Meditative	
  Symbiosis.	
  Jean	
  Laffert	
  .	
  2015	
  	
  
//	
  example	
  code	
  of	
  the	
  graphic	
  pattern	
  designed	
  to	
  be	
  projected	
  over	
  the	
  surface	
  of	
  the	
  plant.	
  
//	
  note:	
  this	
  example	
  is	
  only	
  for	
  demonstrate	
  the	
  graphic	
  pattern,	
  it	
  does	
  not	
  include	
  the	
  
connection	
  to	
  sensors.	
  
//	
  This	
  code	
  is	
  a	
  variation	
  based	
  on	
  the	
  "Sutcliffe	
  Pentagon"	
  composition,	
  by	
  Matt	
  Pearson	
  
(see:	
  Generative	
  Art-­‐Pearson	
  2011.p170-­‐183)	
  	
  
//	
  jdlaffert.com	
  
//========================================================	
  
	
  	
  
FractalRoot	
  pentagon;	
  
float	
  _strutFactor	
  =	
  0.1;	
  
float	
  _strutNoise;	
  
int	
  _maxLevels	
  =	
  3;	
  
	
  
//	
  ======================	
  main	
  program	
  ===================	
  
void	
  setup()	
  {	
  
	
  	
  background	
  (0);	
  
	
  	
  frameRate	
  (5);	
  
	
  	
  size(800,	
  600);	
  
	
  	
  smooth();	
  
	
  	
  _strutNoise=random(10);	
  	
  	
  
}	
  
	
  
void	
  draw(){	
  
	
  	
  
background	
  (0);	
  
	
  
_strutNoise+=0.01;	
  
_strutFactor=(noise(_strutNoise)*3)-­‐1;	
  
	
  
pentagon=new	
  FractalRoot(frameCount);	
  
pentagon.drawShape();	
  
	
  
}	
  
	
  	
  
//	
  =======================	
  objects	
  ======================	
  
	
  	
  
class	
  PointObj	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  float	
  x,	
  y;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  PointObj(float	
  ex,	
  float	
  why)	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  x	
  =	
  ex;	
  
	
  	
  	
  	
  y	
  =	
  why;	
  
	
  	
  }	
  
}	
  	
  
	
  	
  
class	
  FractalRoot	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  PointObj[]	
  pointArr	
  =	
  new	
  PointObj[6];	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  Branch	
  rootBranch;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  
	
  	
  FractalRoot(float	
  startAngle)	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  float	
  centX	
  =	
  width/2;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  float	
  centY	
  =	
  height/2;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  int	
  count	
  =	
  0;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  for	
  (int	
  i	
  =	
  0;	
  i<360;	
  i+=60)	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  float	
  x	
  =	
  centX	
  +	
  (240	
  *	
  cos(radians(i)));	
  	
  
	
  	
  	
  	
  	
  	
  float	
  y	
  =	
  centY	
  +	
  (240	
  *	
  sin(radians(i)));	
  	
  
	
  	
  	
  	
  	
  	
  pointArr[count]	
  =	
  new	
  PointObj(x,	
  y);	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  count++;	
  
	
  	
  	
  	
  }	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  rootBranch	
  =	
  new	
  Branch(0,	
  0,	
  pointArr);	
  
	
  	
  }	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  
	
  	
  void	
  drawShape()	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  rootBranch.drawMe();	
  
	
  	
  }	
  
}	
  
	
  	
  



class	
  Branch	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  int	
  level,	
  num;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  PointObj[]	
  outerPoints	
  =	
  {	
  
	
  	
  };	
  	
  
	
  	
  PointObj[]	
  midPoints	
  =	
  {	
  
	
  	
  };	
  	
  
	
  	
  PointObj[]	
  projPoints	
  =	
  {	
  
	
  	
  };	
  
	
  	
  Branch[]	
  myBranches	
  =	
  {	
  
	
  	
  };	
  
	
  	
  	
  
	
  	
  Branch(int	
  lev,	
  int	
  n,	
  PointObj[]points)	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  level	
  =	
  lev;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  num	
  =	
  n;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  outerPoints	
  =	
  points;	
  
	
  	
  
	
  	
  	
  midPoints	
  =	
  calcMidPoints();	
  
	
  	
  	
  	
  projPoints	
  =	
  calcStrutPoints();	
  
	
  
	
  	
  	
  	
  	
  	
  if	
  ((level+1)<	
  _maxLevels)	
  {	
  
	
  	
  	
  	
  	
  	
  Branch	
  childBranch	
  =	
  new	
  Branch(level+1,	
  0,	
  projPoints);	
  
	
  	
  	
  	
  	
  	
  myBranches	
  =	
  (Branch[])append(myBranches,	
  childBranch);	
  
	
  
	
  	
  	
  	
  	
  	
  for	
  (int	
  k=0;	
  k<outerPoints.length;	
  k++)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  int	
  nextk	
  =	
  (k+4)%outerPoints.length;	
  
	
  	
  	
  	
  	
  	
  	
  	
  PointObj[]	
  newPoints	
  =	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  outerPoints[k],	
  midPoints[k],	
  projPoints[k],	
  projPoints[nextk],	
  midPoints[nextk]	
  
	
  	
  	
  	
  	
  	
  	
  	
  };	
  
	
  	
  	
  	
  	
  	
  	
  	
  childBranch	
  =	
  new	
  Branch(level+1,	
  k+1,	
  newPoints);	
  
	
  	
  	
  	
  	
  	
  	
  	
  myBranches	
  =	
  (Branch[])append(myBranches,	
  childBranch);	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  }	
  
	
  	
  
	
  	
  void	
  drawMe()	
  {	
  
	
  	
  	
  	
  stroke(255,70);	
  
	
  	
  	
  	
  strokeWeight(3-­‐	
  level);	
  	
  
	
  	
  	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  outerPoints.length;	
  i++)	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  int	
  nexti	
  =	
  i+1;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  if	
  (nexti	
  ==	
  outerPoints.length)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  nexti	
  =	
  0;	
  
	
  	
  	
  	
  	
  	
  }	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  line(outerPoints[i].x,	
  outerPoints[i].y,	
  outerPoints[nexti].x,	
  outerPoints[nexti].y);	
  
	
  	
  	
  	
  }	
  
	
  
	
  	
  	
  	
  strokeWeight(0.1);	
  	
  
	
  	
  	
  	
  fill(255,150);	
  
	
  	
  	
  	
  for(int	
  j=0;	
  j<midPoints.length;	
  j++)	
  {	
  
	
  	
  	
  	
  	
  ellipse(midPoints[j].x,	
  midPoints[j].y,	
  5,	
  5);	
  
	
  	
  	
  	
  	
  line(midPoints[j].x,	
  midPoints[j].y,	
  projPoints[j].x,	
  projPoints[j].y);	
  	
  
	
  	
  	
  	
  	
  	
  ellipse(projPoints[j].x,	
  projPoints[j].y,	
  5,	
  5);	
  
	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  for(int	
  k=0;	
  k<myBranches.length;	
  k++)	
  {	
  
	
  	
  	
  	
  	
  	
  myBranches[k].drawMe();	
  
	
  	
  	
  	
  }	
  
	
  	
  }	
  
	
  	
  	
  
	
  	
  
	
  	
  PointObj[]	
  calcMidPoints()	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  PointObj[]	
  mpArray	
  =	
  new	
  PointObj[outerPoints.length];	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  outerPoints.length;	
  i++)	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  int	
  nexti	
  =	
  i+1;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  if	
  (nexti	
  ==	
  outerPoints.length)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  nexti	
  =	
  0;	
  
	
  	
  	
  	
  	
  	
  }	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  PointObj	
  thisMP	
  =	
  calcMidPoint(outerPoints[i],	
  outerPoints[nexti]);	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  mpArray[i]	
  =	
  thisMP;	
  



	
  	
  	
  	
  }	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  return	
  mpArray;	
  
	
  	
  }	
  
	
  	
  
	
  	
  PointObj	
  calcMidPoint(PointObj	
  end1,	
  PointObj	
  end2)	
  {	
  
	
  	
  	
  	
  float	
  mx,	
  my;	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  if(end1.x>end2.x)	
  {	
  
	
  	
  	
  	
  	
  	
  mx=end2.x	
  +	
  ((end1.x	
  -­‐	
  end2.x)/2);	
  
	
  	
  	
  	
  }else{	
  
	
  	
  	
  	
  	
  	
  mx=end1.x+((end2.x-­‐end1.x)/2);	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  if(end1.y>end2.y){	
  
	
  	
  	
  	
  	
  	
  	
  	
  my=end2.y+((end1.y-­‐end2.y)/2);	
  
	
  	
  	
  	
  	
  	
  }else{	
  
	
  	
  	
  	
  	
  	
  	
  	
  my=end1.y+((end2.y-­‐end1.y)/2);	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  return	
  new	
  PointObj(mx,my);	
  
	
  	
  }	
  
	
  
	
  	
  PointObj[]	
  calcStrutPoints()	
  {	
  
	
  	
  	
  	
  PointObj[]	
  strutArray	
  =	
  new	
  PointObj[midPoints.length];	
  
	
  	
  	
  	
  for(int	
  i=0;	
  i<	
  midPoints.length;	
  i++)	
  {	
  
	
  	
  	
  	
  	
  	
  int	
  nexti	
  =	
  (i+3)%midPoints.length	
  ;	
  
	
  	
  	
  	
  	
  	
  PointObj	
  thisSP	
  =	
  calcProjPoint(midPoints[i],	
  outerPoints[nexti]);	
  
	
  	
  	
  	
  	
  	
  strutArray[i]	
  =	
  thisSP;	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  return	
  strutArray;	
  
	
  	
  }	
  
	
  	
  
	
  	
  PointObj	
  calcProjPoint(PointObj	
  mp,	
  PointObj	
  op)	
  {	
  
	
  	
  	
  	
  float	
  px,	
  py;	
  
	
  	
  	
  	
  float	
  adj,opp;	
  
	
  	
  	
  	
  if(op.x>mp.x){	
  
	
  	
  	
  	
  	
  	
  opp=op.x-­‐mp.x;	
  
	
  	
  	
  	
  }else{	
  
	
  	
  	
  	
  	
  	
  opp=mp.x-­‐op.x;	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  if(op.y>mp.y){	
  
	
  	
  	
  	
  	
  	
  adj=op.y-­‐mp.y;	
  
	
  	
  	
  	
  }else{	
  
	
  	
  	
  	
  	
  	
  adj=mp.y-­‐op.y;	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  if(op.x>mp.x){	
  
	
  	
  	
  	
  	
  	
  px=mp.x+(opp*_strutFactor);	
  
	
  	
  	
  	
  }else{	
  
	
  	
  	
  	
  	
  	
  px=mp.x-­‐(opp*_strutFactor);	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  if(op.y>mp.y){	
  
	
  	
  	
  	
  	
  	
  py=mp.y+(adj*_strutFactor);	
  
	
  	
  	
  	
  }else{	
  
	
  	
  	
  	
  	
  	
  py=mp.y-­‐(adj*_strutFactor);	
  
	
  	
  	
  	
  }	
  	
  	
  
	
  
	
  	
  	
  	
  return	
  new	
  PointObj(px,	
  py);	
  
	
  	
  }	
  
}	
  
	
  


