// Meditative Symbiosis. Jean Laffert. 2015

// example code of the graphic pattern designed to be projected over the surface of the plant.
// note: this example is only for demonstrate the graphic pattern, it does not include the
connection to sensors.

// This code is a variation based on the "Sutcliffe Pentagon" composition, by Matt Pearson
(see: Generative Art-Pearson 2011.p170-183)

// jdlaffert.com

FractalRoot pentagon;
float _strutFactor = 0.1;
float _strutNoise;

int _maxLevels = 3;

// ====================== main program ===================
void setup() {

background (0);

frameRate (5);

size(800, 600);

smooth();

_strutNoise=random(10);

}

void draw(){
background (0);

_strutNoise+=0.01;
_strutFactor=(noise(_strutNoise)*3)-1;

pentagon=new FractalRoot(frameCount);
pentagon.drawShape();

class PointObj {
floatx, y;
PointObij(float ex, float why) {
X = ex;
y = why;
}
}

class FractalRoot {
PointObj[] pointArr = new PointObj[6];
Branch rootBranch;

FractalRoot(float startAngle) {

float centX = width/2;

float centY = height/2;

int count = 0;

for (inti = 0; i<360; i+=60) {
float x = centX + (240 * cos(radians(i)));
float y = centY + (240 * sin(radians(i)));
pointArr[count] = new PointObj(x, y);
count++;

}

rootBranch = new Branch(0, 0, pointArr);

}

void drawShape() {
rootBranch.drawMe();

}



class Branch {
int level, num;
PointObj[] outerPoints = {

b

PointObj[] midPoints = {

b

PointObij[] projPoints = {

b

Branch[] myBranches = {

3

Branch(int lev, int n, PointObj[]points) {
level = lev;
num = n;

outerPoints = points;

midPoints = calcMidPoints();
projPoints = calcStrutPoints();

if ((level+1)< _maxLevels) {
Branch childBranch = new Branch(level+1, 0, projPoints);
myBranches = (Branch[])append(myBranches, childBranch);

for (int k=0; k<outerPoints.length; k++) {
int nextk = (k+4)%outerPoints.length;
PointObj[] newPoints = {
outerPoints[k], midPoints[Kk], projPoints[k], projPoints[nextk], midPoints[nextk]
7
childBranch = new Branch(level+1, k+1, newPoints);
myBranches = (Branch[])append(myBranches, childBranch);

}
}
}

void drawMe() {

stroke(255,70);

strokeWeight(3- level);

for (inti = 0; i < outerPoints.length; i++) {
int nexti = i+1;
if (nexti == outerPoints.length) {

nexti = 0;

}

line(outerPoints[i].x, outerPoints[i].y, outerPoints[nexti].x, outerPoints[nexti].y);

}

strokeWeight(0.1);

fill(255,150);

for(int j=0; j<midPoints.length; j++) {
ellipse(midPoints[j].x, midPoints][j].y, 5, 5);
line(midPoints[j].x, midPoints[j].y, projPoints[j].x, projPoints[j].y);
ellipse(projPoints[j].x, projPoints[j].y, 5, 5);
}

for(int k=0; k<myBranches.length; k++) {
myBranches[k].drawMe();

}

}

PointObj[] calcMidPoints() {

PointObj[] mpArray = new PointObj[outerPoints.length];

for (inti = 0; i < outerPoints.length; i++) {
int nexti = i+1;
if (nexti == outerPoints.length) {

nexti = 0;

}
PointObj thisMP = calcMidPoint(outerPoints[i], outerPoints[nexti]);
mpArray[i] = thisMP;



}

return mpArray;

}

PointObj calcMidPoint(PointObj end1, PointObj end2) {
float mx, my;

if(end1.x>end2.x) {
mx=end2.x + ((end1.x - end2.x)/2);
telse{
mx=end1.x+((end2.x-end1.x)/2);
}
if(end1.y>end2.y){
my=end2.y+((end1l.y-end2.y)/2);
telse{
my=end1.y+((end2.y-end1.y)/2);

return new PointObj(mx,my);

}

PointObij[] calcStrutPoints() {
PointObj[] strutArray = new PointObj[midPoints.length];
for(int i=0; i< midPoints.length; i++) {
int nexti = (i+3)%midPoints.length ;
PointObj thisSP = calcProjPoint(midPoints[i], outerPoints[nexti]);
strutArray[i] = thisSP;
}

return strutArray;

}

PointObj calcProjPoint(PointObj mp, PointObj op) {

float px, py;

float adj,opp;

if(op.x>mp.x){
opp=0p.X-mp.X;

telse{
opp=mp.X-0p.X;

}

if(op.y>mp.y){
adj=op.y-mp.y;

telse{

}adj=mp-y-0p-y;

if(op.x>mp.x){
px=mp.x+(opp*_strutFactor);

telse{
px=mp.x-(opp*_strutFactor);

}

if(op.y>mp.y){
py=mp.y+(adj*_strutFactor);

telse{
py=mp.y-(adj*_strutFactor);

}

return new PointObj(px, py);



